PALLADIO

MAIN FEATURES

• INTEGRATION:

The PS-G101 is a versatile passive subwoofer designed for a perfect integration for both Level 5 and Level 6.

• MAGNETIC GRILLES:

The PS-G101 is equipped with a magnetic edgeless square metal grille, ready to be painted.

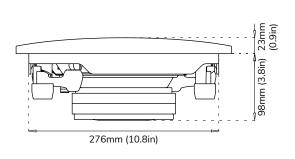
QUICK INSTALLATION :

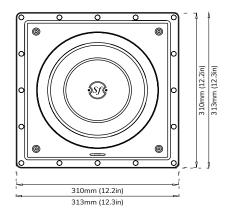
Thanks to the swing out dogs fixing system, all Palladio speakers can be secured quickly and effectively to plasterboard

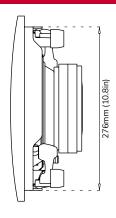
MAGNETIC SQUARE METAL GRILLE

WOOFER:

Long throw 2in voice coil driver. Paper-Foam-PP piston-like rigidity sandwich cone

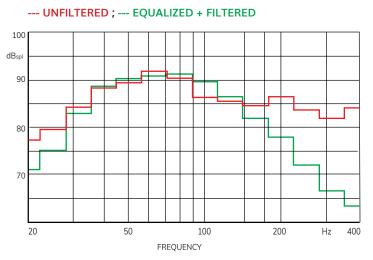


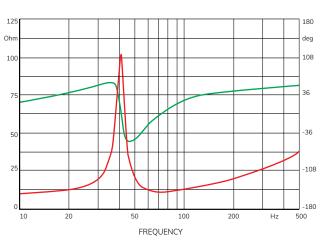

LOUDSPEAKER SYSTEM	In wall passive subwoofer. Infinite baffle.
WOOFER	250 mm / 10 in cone driver. Sonus faber design.
FREQUENCY RESPONSE	25 - 1,000 Hz (**)
SENSITIVITY (2.83 Vrms @ 1m)	86 dBSPL
NOMINAL IMPEDANCE	8Ω
SUGGESTED AMPLIFIER POWER OUTPUT (*)	200 – 800W without clipping
FRAME OUTER	310 x 310 mm / 12.2 x 12.2 in
сит оит	280 x 280 mm / 11 x 11 in
DEPTH BEHIND SURFACE	98 mm / 3.8 in
PROTRUSION	23 mm / 0.9 in
NET WEIGHT	5.6 Kg / 12.4 lb
INCLUDED IN THE BOX	Bezel-Free square magnetic grille


(*) See instruction's manual for more information

(**) Unfiltered & unequalized. External filtering required

PALLADIO

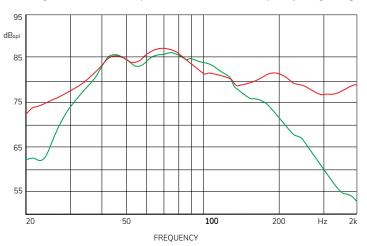




THIRD OCTAVE AXIAL IN - ROOM RESPONSE @1m

IMPEDANCE [MODULE AND PHASE]

AMPLIFIER OUTPUT POWER REQUIREMENTS VS. LISTENING DISTANCE (PER SINGLE CHANNEL) *


	LISTENING DISTANCE [m]								
	1.50	1.75	2.00	2.50	3.00	3.50	4.00		
W CONTINUOUS (RMS)	2.3	3.1	4	6.3	9	12	16		
W PEAK	4.5	6.1	8	12.5	18	25	32		

* [FOR A DIRECT SPL=85 dB; 1 kHz SINE TONE]

	LISTENING DISTANCE [m]								
	1.50	1.75	2.00	2.50	3.00	3.50	4.00		
W CONTINUOUS (RMS)	18	25	30	50	70	100	130		
W PEAK	72	100	130	200	290	390	510		

^{* [}FOR A DIRECT SPL=85 dB; IEC TEST SIGNAL SIMULATING A NORMAL MUSIC PROGRAM]

The huge difference between the values depends on the signals that have been considered in the two examples. A simple sine tone is the most elementary one while the IEC signal is quite complex. In a real world, while the first could conveniently represent the power needs for speech, the second gives an idea of the power needs for wide frequency range, large headroom music.

AXIAL FREQUENCY RESPONSE @1m, 1W

--- UNFILTERED

--- EQUALIZED + FILTERED

Note:

Recommended high-pass filter: 4th order Butterworth (24 dB/oct slope) $F_{\text{cutoff}} = 45 \text{Hz} [\text{@-3dB}]$